42 research outputs found

    Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood

    Get PDF
    Background: Peptidylarginine deiminase 2 (PAD2) and peptidylarginine deiminase 4 (PAD4) are two members of PAD family which are over-expressed in the multiple sclerosis (MS) brain. Through its enzymatic activity PAD2 converts myelin basic protein (MBP) arginines into citrullines - an event that may favour autoimmunity - while peptidylarginine deiminase 4 (PAD4) is involved in chromatin remodelling. Objectives: Our aim was to verify whether an altered epigenetic control of PAD2, as already shown in the MS brain, can be observed in peripheral blood mononuclear cells (PBMCs) of patients with MS since some of these cells also synthesize MBP. Methods: The expression of most suitable reference genes and of PAD2 and PAD4 was assessed by qPCR. Analysis of DNA methylation was performed by bisulfite method. Results: The comparison of PAD2 expression level in PBMCs from patients with MS vs. healthy donors showed that, as well as in the white matter of MS patients, the enzyme is significantly upregulated in affected subjects. Methylation pattern analysis of a CpG island located in the PAD2 promoter showed that over-expression is associated with promoter demethylation. Conclusion: Defective regulation of PAD2 in the periphery, without the immunological shelter of the blood-brain barrier, may contribute to the development of the autoimmune responses in MS

    Poly(ADP-ribosyl)ation is involved in the epigenetic control of TET1 gene transcription

    Get PDF
    TET enzymes are the epigenetic factors involved in the formation of the Sixth DNA base 5-hydroxymethylcytosine, whose deregulation has been associated with tumorigenesis. In particular, TET1 acts as tumor suppressor preventing cell proliferation and tumor metastasis and it has frequently been found down-regulated in cancer. Thus, considering the importance of a tight control of TET1 expression, the epigenetic mechanisms involved in the transcriptional regulation of TET1 gene are here investigated. The involvement of poly(ADP-ribosyl)ation in the control of DNA and histone methylation on TET1 gene was examined. PARP activity is able to positively regulate TET1 expression maintaining a permissive chromatin state characterized by DNA hypomethylation of TET1 CpG island as well as high levels of H3K4 trimethylation. These epigenetic modifications were affected by PAR depletion causing TET1 downregulation and in turn reduced recruitment of TET1 protein on HOXA9 target gene. In conclusion, this work shows that PARP activity is a transcriptional regulator of TET1 gene through the control of epigenetic events and it suggests that deregulation of these mechanisms could account for TET1 repression in cancer

    Validation of suitable internal control genes for expression studies in aging.

    Get PDF
    Quantitative data from experiments of gene expression are often normalized through levels of housekeeping genes transcription by assuming that expression of these genes is highly uniform. This practice is being questioned as it becomes increasingly clear that the level of housekeeping genes expression may vary considerably in certain biological samples. To date, the validation of reference genes in aging has received little attention and suitable reference genes have not yet been defined. Our aim was to evaluate the expression stability of frequently used reference genes in human peripheral blood mononuclear cells with respect to aging. Using quantitative RT-PCR, we carried out an extensive evaluation of five housekeeping genes, i.e. 18s rRNA, ACTB, GAPDH, HPRT1 and GUSB, for stability of expression in samples from donors in the age range 35-74 years. The consistency in the expression stability was quantified on the basis of the coefficient of variation and two algorithms termed geNorm and NormFinder. Our results indicated GUSB be the most suitable transcript and 18s the least for accurate normalization in PBMCs. We also demonstrated that aging is a confounding factor with respect to stability of 18s, HPRT1 and ACTB expression, which were particularly prone to variability in aged donors

    PARP inhibitor ABT-888 affects response of MDA-MB-231 cells to doxorubicin treatment, targeting Snail expression

    Get PDF
    To overcome cancer cells resistance to pharmacological therapy, the development of new therapeutic approaches becomes urgent. For this purpose, the use of poly(ADP-ribose) polymerase (PARP) inhibitors in combination with other cytotoxic agents could represent an efficacious strategy. Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification that plays a well characterized role in the cellular decisions of life and death. Recent findings indicate that PARP-1 may control the expression of Snail, the master gene of epithelial-mesenchymal transition (EMT). Snail is highly represented in different resistant tumors, functioning as a factor regulating anti-apoptotic programmes. MDA-MB-231 is a Snail-expressing metastatic breast cancer cell line, which exhibits chemoresistance properties when treated with damaging agents. In this study, we show that the PARP inhibitor ABT-888 was capable to modulate the MDA-MB-231 cell response to doxorubicin, leading to an increase in the rate of apoptosis. Our further results indicate that PARP-1 controlled Snail expression at transcriptional level in cells exposed to doxorubicin. Given the increasing interest in the employment of PARP inhibitors as chemotherapeutic adjuvants, our in vitro results suggest that one of the mechanisms through which PARP inhibition can chemosensitize cancer cells in vivo, is targeting Snail expression thus promoting apoptosi

    DNA hydroxymethylation levels are altered in blood cells from Down syndrome persons enrolled in the MARK-AGE project

    Get PDF
    Down syndrome (DS) is caused by the presence of part or an entire extra copy of chromosome 21, a phenomenon that can cause a wide spectrum of clinically defined phenotypes of the disease. Most of the clinical signs of DS are typical of the ageing process including dysregulation of immune system. Beyond the causative genetic defect, DS persons display epigenetic alterations, particularly aberrant DNA methylation patterns that can contribute to the heterogeneity of the disease. In the present work we investigated the levels of 5-hydroxymethylcytosine (5hmC) and of the TET dioxygenase enzymes, which are involved in DNA demethylation processes and are often deregulated in pathological conditions as well as in ageing. Analyses were carried out on peripheral blood mononuclear cells of DS volunteers enrolled in the context of the MARK-AGE study, a large-scale cross-sectional population study with subjects representing the general population in eight European countries. We observed a decrease of 5hmC, TET1 and other components of the DNA methylation/demethylation machinery in DS subjects, indicating that aberrant DNA methylation patterns in DS, which may have consequences on the transcriptional status of immune cells, may be due to a global disturbance of methylation control in DS

    Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARKAGE Study

    Get PDF
    Gradual changes in the DNA methylation landscape occur throughout aging virtually in all human tissues. A widespread reduction of 5-methylcytosine (5mC), associated with highly reproducible site-specific hypermethylation, characterizes the genome in aging. Therefore, an equilibrium seems to exist between general and directional deregulating events concerning DNA methylation controllers, which may underpin the age-related epigenetic changes. In this context, 5mC-hydroxylases (TET enzymes) are new potential players. In fact, TETs catalyze the stepwise oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), driving the DNA demethylation process based on thymine DNA glycosylase (TDG)-mediated DNA repair pathway. The present paper reports the expression of DNA hydroxymethylation components, the levels of 5hmC and of its derivatives in peripheral blood mononuclear cells of age-stratified donors recruited in several European countries in the context of the EU Project ‘MARK-AGE’. The results provide evidence for an age-related decline of TET1, TET3 and TDG gene expression along with a decrease of 5hmC and an accumulation of 5caC. These associations were independent of confounding variables, including recruitment center, gender and leukocyte composition. The observed impairment of 5hmC-mediated DNA demethylation pathway in blood cells may lead to aberrant transcriptional programs in the elderly

    Age-dependent expression of DNMT1 and DNMT3B in PBMCs from a large European population enrolled in the MARK-AGE study

    Get PDF
    Aging is associated with alterations in the content and patterns of DNA methylation virtually throughout the entire human lifespan. Reasons for these variations are not well understood. However, several lines of evidence suggest that the epigenetic instability in aging may be traced back to the alteration of the expression of DNA methyltransferases. Here, the association of the expression of DNA methyltransferases DNMT1 and DNMT3B with age has been analysed in the context of the MARK-AGE study, a large-scale cross-sectional study of the European general population. Using peripheral blood mononuclear cells, we assessed the variation of DNMT1 and DNMT3B gene expression in more than two thousand age-stratified women and men (35-75 years) recruited across eight European countries. Significant age-related changes were detected for both transcripts. The level of DNMT1 gradually dropped with aging but this was only observed up to the age of 64 years. By contrast, the expression of DNMT3B decreased linearly with increasing age and this association was particularly evident in females. We next attempted to trace the age-related changes of both transcripts to the influence of different variables that have an impact on changes of their expression in the population, including demographics, dietary and health habits, and clinical parameters. Our results indicate that age affects the expression of DNMT1 and DNMT3B as an almost independent variable in respect of all other variables evaluated

    ADP-ribose polymers localized on Ctcf–Parp1–Dnmt1 complex prevent methylation of Ctcf target sites

    Get PDF
    PARylation [poly(ADP-ribosyl)ation] is involved in the maintenance of genomic methylation patterns through its control of Dnmt1 [DNA (cytosine-5)-methyltransferase 1] activity. Our previous findings indicated that Ctcf (CCCTC-binding factor) may be an important player in key events whereby PARylation controls the unmethylated status of some CpG-rich regions. Ctcf is able to activate Parp1 [poly(ADP-ribose) polymerase 1], which ADP-ribosylates itself and, in turn, inhibits DNA methylation via non-covalent interaction between its ADP-ribose polymers and Dnmt1. By such a mechanism, Ctcf may preserve the epigenetic pattern at promoters of important housekeeping genes. The results of the present study showed Dnmt1 as a new protein partner of Ctcf. Moreover, we show that Ctcf forms a complex with Dnmt1 and PARylated Parp1 at specific Ctcf target sequences and that PARylation is responsible for the maintenance of the unmethylated status of some Ctcf-bound CpGs. We suggest a mechanism by which Parp1, tethered and activated at specific DNA target sites by Ctcf, preserves their methylation-free status

    Parp1 Localizes within the Dnmt1 Promoter and Protects Its Unmethylated State by Its Enzymatic Activity

    Get PDF
    Aberrant hypermethylation of CpG islands in housekeeping gene promoters and widespread genome hypomethylation are typical events occurring in cancer cells. The molecular mechanisms behind these cancer-related changes in DNA methylation patterns are not well understood. Two questions are particularly important: (i) how are CpG islands protected from methylation in normal cells, and how is this protection compromised in cancer cells, and (ii) how does the genome-wide demethylation in cancer cells occur. The latter question is especially intriguing since so far no DNA demethylase enzyme has been found.Our data show that the absence of ADP-ribose polymers (PARs), caused by ectopic over-expression of poly(ADP-ribose) glycohydrolase (PARG) in L929 mouse fibroblast cells leads to aberrant methylation of the CpG island in the promoter of the Dnmt1 gene, which in turn shuts down its transcription. The transcriptional silencing of Dnmt1 may be responsible for the widespread passive hypomethylation of genomic DNA which we detect on the example of pericentromeric repeat sequences. Chromatin immunoprecipitation results show that in normal cells the Dnmt1 promoter is occupied by poly(ADP-ribosyl)ated Parp1, suggesting that PARylated Parp1 plays a role in protecting the promoter from methylation.In conclusion, the genome methylation pattern following PARG over-expression mirrors the pattern characteristic of cancer cells, supporting our idea that the right balance between Parp/Parg activities maintains the DNA methylation patterns in normal cells. The finding that in normal cells Parp1 and ADP-ribose polymers localize on the Dnmt1 promoter raises the possibility that PARylated Parp1 marks those sequences in the genome that must remain unmethylated and protects them from methylation, thus playing a role in the epigenetic regulation of gene expression
    corecore